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Supply C_}}ﬁlﬂ as decentralization, immutability and transparency, not requiring to build prior trust relationships among entities.

gaciazﬂ"ty A plethora of supply chain traceability solutions based on blokchain have been proposed recently. However,
ockchain

current systems are limited to tracing simple goods that have not been part of a manufacturing process. We
propose a system that allows for the traceability of manufactured goods, including their components. Products are
represented using non-fungible digital tokens that are created on a blockchain for each batch of manufactured
products. To create a link between a product and the components that are needed to manufacture it, we propose
“token recipes” that define the amount of tokenized goods required for minting a new token. As input tokens are
automatically and transparently consumed when creating a product token, the physical process of producing a
new good out of existing components is projected onto the ledger. This ultimately leads to the complete trace-
ability of goods, including the origin of inputs. Evaluating the performance of the system, we show that a pro-
totypical implementation for the Ethereum Virtual Machine (EVM) scales linearly with the number of inputs and

Distributed ledger technology
Smart contract

goods tracked.

1. Introduction

Providing traceability of goods from resource to retailer has become
increasingly important in the past decades. Consumers have greater in-
terest in goods that comply with certain ecological and ethical standards
[1]. Global supply chains have become more complex, hampering quality
management in manufacturers’ procurement [2]. Furthermore, regula-
tions, international standardizations and increased consumer awareness
pose novel requirements for supply chain management systems. For
instance, the European Parliament postulates the traceability of food,
requiring food suppliers and market participants to provide information
about provenance of goods [3]. In addition, the ISO 9001:2015 standard
instructs organizations to monitor the identifiability and traceability of
products and services.

However, traditional supply chain management systems are isolated
from other participants and unable to provide comprehensible prove-
nance information [4] which cause some shortcomings, including
insufficient trust between parties, isolated data storage, and
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unsatisfactory standardization in communication and data formats [5,6].
Recently, blockchain technologies have been proposed for providing
enhanced traceability in supply chains [6-10]. Major drivers originate
from typical blockchain characteristics, such as decentralization, verifi-
ability and immutability, that could tackle the observed shortcomings.

Current blockchain-based solutions promote the traceability of the
supply chain by tracking goods over multiple tiers utilizing markers, such
as RFID and QR codes [5]. This linkage mechanism is able to prove the
provenance for anti-counterfeiting of high value goods, such as diamonds
and medicine [11], or be generally used in the post-retail supply chain
[10]. But these approaches are limited to non-modifiable goods and do
not consider the production process. Thus, it is neither possible to track a
product after it has been processed, nor to trace an end-product's inputs
towards its primary resources.

In contrast to existing solutions, we foster a representation mecha-
nism for the convertibility of products. Instead of only projecting physical
goods onto the blockchain in the form of tokens, our target is to docu-
ment their transformation in the production process on the ledger. We
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therefore propose a set of smart contracts that handle modifiable goods
by capturing their creation, transformation and exchange processes on a
distributed ledger. As a result, not only the good's origin but also its in-
puts are traceable. Hereby, we tackle two requirements for supply chain
management that conventional systems cannot deliver comprehensively
[12]. Firstly, customers are empowered to review the quality of a product
and its ingredients from various dimensions, such as environmental and
labour standards. Secondly, in the context of quality management, the
proposed system enables manufacturers to monitor the supply chain on
multiple tiers rather than just rely on the information provided by sup-
pliers. Our key contributions in this paper are as follows:

1. We design a supply chain traceability system that models
manufacturing processes as token recipes.

2. We present a prototypical implementation for the Ethereum Virtual
Machine (EVM) using smart contracts.

3. We evaluate our implementation with respect to the execution costs
of smart contracts and the scalability of our system with increasing
product complexity in terms of inputs.

2. Background and related work
2.1. Conventional supply chain provenance systems

The state-of-the-art for tracing and tracking products throughout a
supply chain is to store records of suppliers and customers in a central-
ized manner within the supply chain management system of each
participant [4]. This information is isolated or shared among suppliers
and customers to achieve comprehensive insights on supply chain
provenance [12].

In the context of supply chain management, traceability follows a
good's path upwards to its origin, while tracking refers to the downward
operation from raw materials to end products [1]. For storing, sharing
and managing relevant information, a plethora of information systems
are used in practice. Warehouse and transport management systems focus
on internal warehouse operations, while Enterprise Resource Planning
(ERP) systems include supplier management, reordering and billing [13].
Dedicated supply chain management software applications target at
forecasting future demands and satisfying them by available suppliers
[14]. As no global view on the supply chain is given, provenance infor-
mation is retrieved from the next tier, requiring trust in the supplier or a
third party. However, it is essential to enable the multi-tier traceability to
decrease risks caused by quality fluctuations in source products [15].

To ensure the coupling between physical goods and digital repre-
sentations, identification mechanisms are fundamental. The ISO
28219:2017 standard defines guidelines for creating globally valid
identifiers that are enforced by utilizing bar codes or two-dimensional
symbols, such as QR codes and alternative RFID tags, to project phys-
ical goods onto digital systems [16]. Identifiers either refer to individual
goods or product batches. Varying the batch size is able to influence the
granularity to which the products are traceable. To ensure a certain
quality grade, Bechini et al. have proposed a scheme to define batches of
goods that are linked to a multitude of quality features [12].

While traditional supply chain information systems are capable of
uniquely identifying products, their traceability is limited. This is mainly
due to isolated data that only reflects the organizations’ sourcing and
sales, while tracing ingredients over multiple tiers would require shared
data that is tamper-proof while maintaining high accessibility.

2.2. Smart contracts and the ethereum virtual machine

Blockchains provide a distributed, shared state in which all partici-
pants agree on using a consensus algorithm. Their tamper-proof char-
acteristics facilitate the opportunity of introducing a global view on
multi-tier supply chains [17]. To apply business logic in blockchains,
smart contracts have been introduced. First proposed by Nick Szabo in

Digital Communications and Networks xxx (xxxx) Xxxx

1994 [18], smart contracts are computer programs that enforce rules
without requiring a third party. In the Bitcoin blockchain, a basic version
of smart contracts is implemented through a scripting system that facil-
itates use cases like multi-user accounts (multi-signature wallets) and
escrow services.

The main technology advancement of the Ethereum blockchain [19]
is the introduction of a general purpose and a turing complete smart
contract system which is manifested in the EVM.

In the EVM, a program code is executed by miners and other network
participants who verify state changes. A smart contract in Ethereum is
typically written in a high-level programming language like Solidity or
Viper and compiled to bytecode that is then deployed on the blockchain.
The execution requires sending a transaction to the contract's address
while specifying which function is to be called given a set of parameters.
These functions in turn can call other smart contracts if they have been
programmed to do so. Computationally intensive routines, however, are
not suitable, as the execution has a cost attached to it. For each operation
supported by the EVM, a gas cost is defined in the Ethereum yellow paper
[20], where the main cost drivers are operations that store or change
values on the blockchain. A transaction therefore needs to contain a
sufficient amount of gas in order to guarantee successful execution. The
actual costs of a transaction depend on how much gas is needed, and the
gas price a user is willing to pay for each unit of gas. The transaction costs
paid by a user are awarded to the miner that includes the transaction in a
new block, as s/he has to verify and execute the transaction.

While the EVM was originally designed for the Ehereum blockchain,
several projects aim to port it to other ledgers. For instance, Counterparty
adds a secondary computation layer to run the EVM code on the Bitcoin
network. Qtum supplies a Bitcoin fork implementing the EVM with the
goal of abstracting from Ethereum's account-based model in order to
support Bitcoin-like light clients. Additionally, smart contracts for the
EVM can also be run on permissioned blockchains like Quorum or
Hyperledger Burrow, removing the need to operate in a public environ-
ment. To provide a common form of tokens in Ethereum, a standard
interface referred to as Ethereum Request for Comments (ERC) 20 was
introduced. Popular Ethereum wallets like Mist and Parity support tokens
that implement this interface out of the box. All standard operations such
as receiving balances and transferring tokens to other addresses are
available in the wallet's GUL

In contrast to ERC20 tokens which cannot be distinguished, a stan-
dard for non-fungible tokens, ERC721, has been proposed for handling
deeds. The target was to create a standardized interface for creating and
trading discriminable tokens reflecting digital or physical goods.
Consuming tokens or defining conditions for their generation was not
included in the proposal, resulting in the requirement for the imple-
mentation of non-standard functionality.

2.3. External data storage

While a blockchain can be used as a data store, it is impractical to
store large files on it due to the attached transaction costs that prevent
rapid ledger growth [19,21]. As sharing additional product-specific in-
formation along the supply-chain is a requirement in many use cases
[22], external data should be accessible in a secure and distributed
manner with high availability.

In the context of blockchain technologies, peer-to-peer storage net-
works, such as IPFS [23] and Swarm [24], have been proposed to permit
storing data in a peer-to-peer fashion, but outside of a blockchain. Stored
data can be held redundantly by multiple participants and can be
accessed through a unique hash of the data. As data is addressed by its
hash, the underlying information is tamper-proof and therefore well
suited for linking to external data from, for example, smart contracts.
However, the data can be accessed only if network participants make it
available. Mechanisms to incentivize users to keep data available are
currently in development in Swarm and Filecoin [25], a project that
builds upon IPFS.
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2.4. Blockchain-based supply chain traceability

Several blockchain-based solutions have been proposed in literature
to overcome current obstacles in guaranteeing a certain product quality
[26], to comply with legal obligations [12], or to counter fraud [27].

While there are various approaches tackling supply chain traceability,
they are mostly concerned with tracing single, non-modifiable goods [9,
28]. In fact, they target at proving a good's authenticity and ownership
via multiple hops. For instance, Kim and Laskowski have presented an
ontology that promotes provenance in supply chains using the Ethereum
blockchain [9]. The proposed contract is implemented using Solidity and
supports several typical supply chain operations such as produce and
consume. Nevertheless, the definition of novel functions and properties in
the contract is limited to a rigid type system, and the production of new
goods out of existing resources is not possible.

A common issue in the supply chain traceability is the projection of
physical goods onto a digital representation. Tian has suggested a token
representation that implies benefits, such as proving authenticity by
attaching RFID chips or QR codes, to link physical products with their
digital counterparts on the blockchain [28]. It inherently allows for
proving ownership and permits transferring it to another party. Hereby, a
good can be tracked from creation to retail. Toyoda et al. have proposed a
blockchain-based post-retail supply chain system for anti-counterfeits in
which they utilized this linkage to enable tracing products after being
sold in retail [10].

Reviewing the above mentioned approaches for providing trace-
ability in the supply chain unveils a major shortcoming for more complex
use cases, namely, while they permit creating digital representations of
physical goods, which facilitate tracking across multiple entities, this
connection is lost in case the product is processed.

3. Concept

We propose a blockchain-based, decentralized supply chain man-
agement system based on smart contracts. In order to provide compre-
hensive provenance information to consumers and producers, we
maintain the relationship between the resources and the products in the
manufacturing process. The concept is based on two key ideas: repre-
senting physical goods in the form of digital tokens, and recipes that
enable their transformation. Additional functionalities like certifying
goods, transferring, splitting and combining tokens facilitate the cross-
business traceability. The following subsections describe each of these
aspects in detail and introduce the participants’ roles based on a specific
example visualized in Fig. 1.

3.1. Tokenization of goods

For each type of goods managed in the supply chain, a smart contract
is set up. Within such a smart contract, tokens that represent physical
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goods can be created. One token corresponds to one batch of goods that
could be measured in items, weight, volume or size. Product information
can be stored via IPFS or Swarm, by adding the corresponding hash to the
token. This data could include information, such as product images,
expiration dates, disposal instructions, manuals, documentation of de-
fects and many others. General product type information could also be
referenced in the token contract itself.

The batch size is flexible, so that not only large quantities of goods,
but also single entities are manageable. The tokens are non-fungible,
meaning that each token is unique. This allows for distinguishing be-
tween batches of the same type of goods. To apply this concept to the
physical world, the contract owner would create digital tokens that
correspond to the manufactured products.

3.2. Recipes for good transformation

In order to digitally represent a manufacturing process, several tokens
can be transformed into a new token. When creating a new smart con-
tract, the product composition is defined. Comparable to a recipe, the
creator specifies a number of input goods and corresponding amounts
that are required for the creation of a new product. Following the recipe,
when a batch of goods is to be created, the owner of the contract needs to
possess the required input goods in sufficient amount. In fact, the specific
batches of input tokens need to be specified, so that they can be
consumed by the smart contract automatically. If a batch of units is not
entirely depleted, the remaining units are kept so that they can be used
for future manufacturing. Only contract owners can generate token
batches, as a contract always corresponds to the product only manufac-
tured by a specific producer or supplier. However, token owners can split,
merge, transfer and consume batches.

As the product recipe should be immutable to guarantee the compa-
rability of minted batches, it cannot be changed after the token contract's
deployment and applies to all minting procedures. When minting a token,
the amount of units within the batch, as well as the used components'
information need to be passed, as exemplified in Algorithm 1. Within the
minting function, it is first ensured that the declared array sizes are equal
and comply with the recipe size (line 2). Afterwards, each component is
checked to ensure if enough units were used according to the recipe (lines
4-5). Furthermore, used contract addresses and those defined in the
recipe are compared (line 7). If they do not match, it is assumed that the
recipe has used a certificate contract. In this case, the certificate is called
to ensure that the used component is certified (lines 8-9). If it is not
certified, the entire function reverts. Otherwise, the component's contract
is called and the batch is reduced according to the amount that was
declared (line 11). Finally, a batch identifier and a token holding owner
information as well as its size are created (lines 12-15).
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Fig. 1. Projecting the production process onto digital tokens using smart contracts in a sample supply chain.
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Algorithm 1: mint(u, I, 15, 1)

recipe : R.— array of contract addresses of
required inputs
R,— array of required units

input : u— units to mint in batch
I.— array of input contract addresses
I,— array of input batches identifiers
I,— array of input units

output: identifier of the newly added token

1 begin

2 if |1,| = |I,]| = |I.| = |R.| then continue

3 else revert

4 fori «— Oto|R.—1do

5 if u = I,, > R,, then continue

6 else revert

7 if 7., = R, then continue

8 else

9 if 1., € Instance(R.,) where R, is
a certificate contract then
continue

10 else revert

/* Calling external contract
to reduce batch content */
11 | Uy, € Instance(l,)) < consume(l,,)

12 tokenld —
keccak256(u, 1., I, 1,, msg. sender, time)

13 token.owner «— msg. sender
14 token.amount < u
15 tokens[tokenld] < token

3.3. Certified goods

Some goods are equally usable in a manufacturing process, because
they are equal in type. They could also be equal in terms of compliance
with standards indicating similar quality. However, the goods may
originate from different sources. With the help of a certificate contract,
multiple token contracts can be defined to be equal. This introduces an
ontology for defining product inputs during token creation. In this aspect,
our approach bears similarity with the architecture proposed by Bechini
et al. [12], in which the certificates can be used in place of a specific good
when defining a recipe as part of a manufacturing process. Once a batch
is to be created, the input tokens are checked on whether they conform to
the specified certificate.

In addition to creating comparability between products, supplier
certificates are essential for ensuring quality in sourcing [29]. As a result,
the proposed system can be used for quality management over multiple
tiers. In this regard, certificates that have been issued enforce the
authenticity of claimed production processes. As product tokens con-
sisting of other components can only be minted if respective inputs are
consumed, this mechanism enforces a link to physical processes. How-
ever, as this is not the case for primary resources, certifiers monitor the
correctness of the applied information.
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3.4. Incentives to store external data

We propose additional product information to be stored externally in
P2P storages, such as IPFS and Swarm. Currently, these systems do not
offer any in-built incentive mechanisms for users to host or distribute
data. To mitigate this problem, we utilize characteristics of the proposed
supply chain traceability system. Each participant in the supply chain
that owns tokens of a given contract has an interest in providing
comprehensive data to increase its value. Therefore, not only the contract
owner hosts external data in the P2P system, but also suppliers, cus-
tomers, retailers and so forth. As a result, data availability can be guar-
anteed by creating intrinsic intensives that are specific to the given use
case and provide product-specific information to participants.

3.5. Roles

A set of roles emerge from the actions participants can perform in a
system. A user may act a single or multiple roles. Fig. 1 illustrates these
roles based on a simplified example taken from the wood processing
industry. It contains participating entities as icons, surrounded by dashed
lines separating the roles. Edges represent interaction, such as a token
transfer or a certification. Smart contract symbols attached to every good
indicate that a smart contract exists on a blockchain representing batches
of it as digital tokens. We identify the following roles that are also
summarized in Table 1, displaying the set of functionalities typically
executed by the corresponding entity.

1. Resource suppliers create goods without any input. When a forester
cuts trees, several inputs, such as the labour or gasoline for machines,
are required. However, they never become a physical part of the
manufactured product. As every supply chain only has a partial view
of the real world, resource suppliers that do not consider all inputs
must exist in the model. In our example, the glue plant is also a
resource supplier as it has no inputs, but in other scenarios its inputs
may be modeled to originate from another entity. A resource supplier
may split or merge batches before they are transferred to other en-
tities. In the example, the forester transfers batches of logs to the
sawmill.

2. Producers in turn do require input goods for producing outputs. To
represent this process on the blockchain, the processing industry
entity first defines all the goods that are required to manufacture a
certain product. The input goods are acquired physically, while this
process is digitally captured through token transfers. Consequently,
the producer owns the input tokens which are required for the crea-
tion of a new token. In the example, the sawmill is a producer that
acquires batches of logs as well as glue. To ensure that sufficient input
tokens are present, it can merge batches. The sawmill is then able to
produce a batch of edge-glued wood, which it could split and transfer
to a logistics or retail company.

3. Logistics and Retail firms acquire tokens, but do not alter a good itself.
For example, a batch of 100 units of edge-glued wood could be split,
transferred to a logistics company and distributed to multiple hard-
ware stores. If the goods have been obtained by a wholesaler, merged
batches could be transferred to other retailers. Individual customers

Table 1
Role definition and actions performed within the system (S/M/T = Split/Merge/
Transfer).

Roles Actions
Create Consume S/M/T Certify
Res. Supplier v v
Producer v v v
Logistics 4
Consumer v

Certifier v
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could also keep ownership without consuming the products in order
to resell it to someone else. In this scenario, the customer is not
strictly modelled as a consumer.

4. Consumers ultimately receive and consume products. This process
results in the deletion of the representing token batch, meaning it can
no longer be used as part of the supply chain. However, its prove-
nance can still be verified. If the retail customer is not modelled as
part of the supply chain, a hardware store may act as a consumer: it
removes the token from the supply chain when the item has been sold.

5. Certifiers issue certificates of equality for multiple goods. They are
responsible for guaranteeing quality, following certain product stan-
dards or labor safety requirements. In practical terms, an official
standardization organization could act as such a certifier. In our
example, it verifies that logs coming from the forester meet certain
quality guidelines. It doesn't own, create or handle any tokens itself. It
is also possible that the sawmill creates its own certificate for equally
usable goods. It can then utilize all products that have been certified
to qualify to a certain level of similarity.

3.6. Traceability

The physical production process is fully reflected on the blockchain. It
works across multiple entities, as they cannot proceed without correct
inputs. Every step of the production process is accountable, and therefore
traceability is not only provided for a single good, but also for its in-
gredients. Depending on the interval in which new blocks are added to
the blockchain, the block creation timestamp informs about the time and
date when a given product has been manufactured. As products are
handled in batches, input information is available by batch. For example,
a batch of edge-glued wood could be traceable to a batch of 100 logs. In
order to accomplish traceability for single goods, it should be declared as
its own batch. However, fine-grained traceability comes with the cost of
higher transaction counts.

4. Implementation

To achieve advanced traceability in supply chains, we propose a set of
solidity contracts which are deployable on every EVM compatible
blockchain. To achieve widespread compatibility, the ERC 721 interface
is implemented. As a result, standard Ethereum wallets supporting the
interface can be used for managing and trading tokens. Since minting of
tokens is not provided by default, such actions have to be taken by using a
tailored user interface. To extend the feature set, we inherit from the
well-tested token contract implementation that is supplied by Open-
Zeppelin, a library for secure smart contract development. In our modi-
fied implementation, we suggest the representation of product batches as
unique data structures which hold certain characteristics, such as the

A A
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goods consumed during the production process. Each batch of products
corresponds to one token that holds unique features. Resource suppliers
and manufacturers hold their own set of token contracts, one for each
kind of product. To facilitate the deployment of novel token contracts,
they can utilize a factory contract. While a token contract's ownership
always remains with the initial deployer, the batches may be traded and
change owners.

To clarify our approach, we follow the example provided in our
concept, but select a subset of processes for improved readability. The
simplified example contains three parties who operate along a supply
chain in six steps. The first entities involved are resource suppliers,
namely, the forester and the glue plant who produce and sell wood or
glue correspondingly, as presented in Fig. 2. The parties reflecting the
production and trading processes along the supply chain follow the
subsequent steps:

1. Token contracts are created to hold all batches of wood and glue that
were produced by that specific forester and glue plant. As these goods
do not involve any direct inputs, no additional products are required
to add a batch of wood or glue in the contract.

2. A certifier approves the forester's log tokens if the organization's
measures apply. This step is essential for defining inputs for goods
which need to comply with certain standards. For instance, when a
sawmill creates a board token contract, it may want to guarantee a
high level of wood quality for all boards produced. Instead of speci-
fying a particular wood contract, certificates can be used.

3. The sawmill defines two required inputs: any logs that are certified by
the certifier and the glue produced by a specific glue plant. Through
this mechanism, the sawmill is not bound to a single supplier but is
enabled to either define a certificate to which manufactured products
need to comply or to directly specify a supplier's good.

4. To add a batch of logs, the forester does not require any inputs, as s/
he acts in the role of a resource producer. The created batch may be
split thereafter, resulting in two or more new batches. Split operations
are not visualized in Fig. 2 to prevent further complexity.

5. The created batch of ten units is sent to the sawmill which is notified
through an event triggered in the transfer contract function. The glue
plant performs corresponding steps.

6. To add a batch of edge-glued wood, the sawmill needs to define the
wood and glue used during production. The add-batch function first
checks if the defined wood is certified by querying the certifier's
certificate contract. If the result is positive, the wood is consumed,
i.e., the wood token's consumption function is called, reducing the
overall amount of wood the forester's wood contract holds. The
consumption of tokens is only possible for owned token batches,
which in our example is the case as the forester transfers the

A A

Forester Glue Sawmill croate Certifier
A create() Plant create() i(requires: [0x90,0x20], L create()
‘ > ‘ ' amount: [1,5]) ‘ > .
i tokenld: 0x10| ~ Token:Logs : tokenld: 0x20 Token:Glue . ' tokenld: Certificate:Logs
b ARREREEhbh b SRR bbb ,_’ Token: Edge .<_t<_)_gr_1__._0_x_9_0_
: : ilokenld: 0301 giued wood : L
. mint (amount: 30 [ . mint (amount: 100 [ ! T -
— { ) g @ ‘(d'O o1 ) »| |<<TransferEvent : : cemfy(.'iood
: id: 0x101 [ id:ox201 7] (id: 0201 | @ . : (tokenld: 0x10)
————————————————————— transferTo (id: 0x201, to: Sawmill, i mint i
, transferTo (id: 0x101, 6 to: Sawmill, amount: 5) _ amount: 5)>> E (tokenld: [0x101 ,0x201],i
' gl Bl EEEEEEEEEEEEES> amounts used: [1,5], '

| to: Sawmill, amount: 10)
®e =

<<TransferEvent (id: 0x101,
to: Sawmill, amount: 10)>>

amount created: 1)

hasGood(0x10)
result: true

consume (id: 0x101, amount: 1)

Fig. 2. Example use case: after a certifier approves a token that is used for defining required inputs in novel tokens.
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ownership in Step 5. As the glue token is defined directly without
utilizing a certificate before, the token is reduced instantly.

As a result, the forester holds twenty units of wood, the glue plant
owns fifty-nine units of glue while the sawmill holds nine units of wood,
no glue and one unit of edge-glued wood.

4.1. Light weight implementation

Implementing the ERC 721 interface brings about various benefits,
such as compatibility with wallets supporting the standard and possi-
bility to extend well-tested contracts like those supplied by Open-
Zeppelin. However, not all specified functionalities are required for the
given use-case. For instance, the owner of function permits retrieving the
owner of a specific token, or in this case the product batch. In the specific
contract implementation, this results in the requirement for creating a
mapping from the batch to the owner, while otherwise only the opposite
direction would be necessary to keep track of the owned tokens. In sce-
narios that require large amounts of batches, these additional storage
operations produce increased gas costs for transactions such as minting
and transferring. Furthermore, the need for additional function code
increases the deployment costs of contract owners.

To reduce the overhead involved, a lightweight contract is imple-
mented as an alternative to the more general ERC 721 compliant version.
Here, only those functions deemed necessary for the given use case are
implemented, producing less overhead and therefore decreasing gas
costs. The downside of this approach is losing compatibility provided by
the standard interface. Section 5.1 provides an evaluation of the gas costs
involved in both approaches. In the following section, we refer to the
lightweight implementation as it is well tailored for supply chain
scenarios.

4.2. Design decisions

Certifiers deploy their own contracts that hold certificates for multi-
ple goods which possess similar characteristics. Alternatively, these or-
ganizations could issue signed certificates which are added to the smart
contracts of corresponding products. This approach enables observers to
receive all certificates a good holds without querying a third contract.
However, the certifier's signature has to be verified, which adds over-
head. When storing certified products in a dedicated certificate contract,
the certificate has to be known before querying for a specific product,
while in the former approaches this is not the case. Nevertheless, cer-
tificate contracts provide an important property for providing an
ontology of the products' similarity. Hereby, certificates can be declared
as inputs for tokens rather than define a specific good which would
enforce a single supplier for sourcing.

For generating unique batch identifiers, resources, the sender address
and time are hashed using a SHA-3 hash function. While hashes bear the
disadvantage of possible collisions, using a counter would require
another storage operation every time a new batch is created. As the
possibility of a collision within a single token contract with a byte length
of 12 is in the measures of approximately 1 : 7.9*10'®, we assume it to be
small enough to rely on this mechanism to decrease operational gas costs.

4.3. Smart contract optimizations

In the EVM, gas costs are assigned to each operation. Despite
deploying new contracts, storing variables in the contract storage is the
most expensive operation [20]. To decrease operational costs, it is
therefore desirable to minimize such costly procedures. As a first mea-
sure, we use events rather than storage in case the data is not accessed
within the contract (cf. Section 4.4). Secondly, as the word size in the
EVM is 32 bytes long and storing smaller types results in costs reflecting
the full word size, we use a solidity optimizer that merges smaller vari-
ables to mitigate the expenses involved under certain conditions. We'll
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analyze the impact of this approach in Section 5.1.2.

When storing required inputs for creating tokens, we demand the
contract address, the batch identifiers and the amounts needed to create
one product unit. Contract addresses in Ethereum are 40 hexadecimal
digits long and therefore require 20 bytes for storage. While usually the
remaining 12 bytes are padded with zeros, we use 12-byte-long batch
identifiers and concatenate them with the corresponding contract added,
resulting in a single 32 byte writing operation, as illustrated in Fig. 4. The
size of 24 hexadecimal digits provides sufficient space for storing unique
identifiers and is derived from SHA-3 hash in the contract. The concat-
enation and respective split operations are implemented using in-line
assembly to provide a gas-efficient calculation.

The use of smart contracts should be decoupled from user interaction.
Adding a new product is therefore conducted through a factory contract
which deploys a corresponding token contract on the blockchain. Here-
by, the maintainability is increased, as the front-end applications do not
need to handle the contract code and the following migrations are
deployable through the factory contract.

4.4. Events for analytics

As the main target of our approach is to increase transparency in the
supply chain, the information about minted tokens, as well as their
components and ownership has to be accessible. Intuitively, batch inputs
would be stored within their corresponding struts and pulled via getter
methods. As provenance information is not required by contracts but
only queried for analysis purposes, the token contract emits events rather
than storing all information in order to decrease gas cost. Declaring topics
when emitting events enables filtering and searching for attributes but
are more expensive than using a raw data format. Even though events are
not stored, they are reproducible, verifiable and easily observable due to
the use of bloom filters for receiving relevant blocks in the blockchain
[20].

We utilize the emitted events for providing traceability of products by
recursively querying the inputs that have been declared for the token's
creation. As the contract enforces the consumption of these inputs, the
real world production process is reflected. Correspondingly, receiving all
inputs in a recursive manner results in a tree of production inputs and
unveils all resources used.

4.5. Mobile and web application

In order to increase accessability, we implement a mobile and a web
client to interact with the system in a real world setting. While the former
targets at resource suppliers, producers, retailers and logistics, the latter
focuses on consumers’ requirements.

As illustrated in Fig. 3, the web application facilitates the discovery of
existing goods and the creation of new types of goods. It also supports
batch creation based on existing goods and can generate QR codes for
individual product batches. In practical terms, QR codes encode specific
batch identifiers that can be printed and added to physical product
batches, which in turn can be scanned with a smartphone running the
mobile client. Furthermore, individual batches can be inspected: a tree
visualization reveals which product batches have been used to manu-
facture the selected good, enabling the possibility to trace an individual
product's origin as well as its components.

After scanning a QR code using the mobile client, information about
the quantity within the individual batch as well as its ingredients are
presented. To achieve more elaborate information about resources used
in the product, users can iteratively follow a tree structure representing
the components with raw materials as leafs in the tree.

For communicating with the presented smart contract, Ethereum's
JavaScript library Web3 is used. It relies on an injected Web3 instance
that is connected to an Ethereum node providing a JSON RPC interface.
For public networks, such instances are provided by Infura. In a con-
sortium centered on supply-chain traceability, each partner could supply
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ACC: 0X0014...

BAL:1.02

Create a contract for new product

Description Number of Ingredients
table 2

Ingredient 1 Source amount 1
edge glued wood v 2
0x2d783b616bDA6D7282076904821 Cf851 D6cIbI5

Ingredient 2 Source amount 2
screws A 36

0x767{84F6Aa95c58e3c3BIfBI 9A66d1 75c9000734

CREATE TOKEN CONTRACT

Existing Product Token Address

CHAIR 0x86cAeF5c0AEe5B744D81 eff34ccabF5460085706
SCREWS 0x767f84F6Aa95c58e3c3BIfB1 9A66d1 75¢9000734
EDGE GLUED WOOD 0x2d783b61{6bD46D7a82076904821 Cf851 D6cIb95
WOOD 0xbB68C7dEad58b7DF05¢c2BA2BIF7744c6e47609D4
GLUE 0x89c4afcC23115326c72d3841 9D2B13e46156C048
Rows per page: 5 15 0f9 > >l

-

Fig. 3. Creating a new product type in the web application (a wooden table represented by a token contract). As the application automatically discovers existing

products, possible inputs can be chosen from a drop down list.

|0X692a70d26424a56d206627a697d1 a86395877b3a|f33dbc2b4b31beba473de340
C

D J
R R

ContractAddress BatchID

Fig. 4. Contract addresses and batch identifiers are saved in a single 32 byte
array to minimize storage operations.

such managed instances. Thus, the individual client can, but doesn't
necessarily have to run its own blockchain instance.

5. Evaluation

The prototypical implementation of a supply chain traceability sys-
tem based on smart contracts raises various questions regarding
deployment and maintenance costs as well as scalability. As such draw-
backs are common issues when utilizing blockchain technologies [8], we
focus on these topics in the following sections to evaluate the applica-
bility of the proposed system.

Information distribution in decentralized networks is limited by its
weakest link in terms of bandwidth, storage and processing capabilities.
In the blockchain context, block time and size are adjusted to satisfy the
majority of nodes participating in the network. While Bitcoin pursues to
produce a single block of one megabyte every 10 mins [30], Ethereum
permits mining blocks every 15s. In order to limit ledger growth and
processing steps performed within a single block, an upper bound is
determined by Ethereum's gas limit (cf. Section 2.2). In recent years, the
public Ethereum blockchain could prove its robustness in an unpermis-
sioned environment under the given configuration. Therefore, we eval-
uate the proposed concept's scalability on the same limitations in the
form of gas as the public Ethereum network.

5.1. Gas costs

For analyzing the involved costs, we assume gas consumption as
defined in Ethereum's yellow paper [20]. We refrain from converting
measured gas costs to Ethereum's native currency or conventional cur-
rencies due to the lack of expressiveness. Such conversions would not
only be subject to the fluctuating exchange rates, but also the changing
gas costs which depend on various factors, such as current blocks' gas use
and waiting time until a transaction is mined (cf. 2.2). In addition, the
proposed approach is independent from the underlying blockchain and
may be run, for example, in a permissioned manner.

We differentiate between deployment and batch creation costs. Since

participants create a contract for each type of product they offer,
deployment costs are only relevant for novel products. The actual
deployment costs depend on the amount of inputs declared, as they have
to be stored in the contract. In the following subsections, we focus on the
approaches presented in the implementation - namely ERC721, a light-
weight version of ERC721 using a library contract. Additionally, we
consider the case of optimized contract storage during deployment
(uint32 arrays), and storing batch creation events on the chain (storage-
based), as well as the impact of multi-tiered supply-chains.

5.1.1. ERC721 and lightweight approach

Following the OpenZeppelin implementation of ERC721, we can
observe the highest deployment costs. This is due to functionality like bi-
directional storage, and unnecessary functionality for the use case as
described in Section 4.1. As batch creation also makes use of events, the
implementation performs best, very similar to the lightweight approach.

When removing the unneeded functionality to obtain a lightweight
implementation, we lose compatibility with the standard. However, as
Fig. 5a) shows, we can reduce the deployment costs.

a) deployment

b) batch creation
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Fig. 5. Gas costs for contract deployment and batch creation by implementation
and number of inputs.
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5.1.2. Storage optimization and events

To ensure that the right amount of goods have been consumed for
creating a corresponding token, these requirements need to be stored
within the contract. By default, the approaches ERC721, Lightweight and
Library use uint256 values for storing input amounts. This results in a
linear growth in gas costs with the increase in the number of inputs.
Optimizing storage use with uint32 arrays just as described in Section
4.3, we can reduce deployment costs as seen in Fig. 5a): we observe a
lower slope at a step by every eight inputs. This is due to the fact that the
optimizer concatenates up to eight variables in a single storage location
before allocating a new one. However, when storing only a few variables,
the overhead for merging variables in a single location exceeds its ben-
efits. This mechanism is only capable of concatenating types with the size
of 8 bytes or multiples of it [34].

For logging batch creation, we can resort to using events instead of
storage. Comprehensive traceability information can be obtained by
retrieving emitted events from a blockchain node using the web3 API. As
this data is not required for smart contract operations, using events is
sufficient so that transformation information is not stored within the
contract, leading to decreased operational costs. Fig. 5b) depicts a com-
parison of multiple approaches with respect to the amount of input
goods. We observe a significantly steeper increase in gas costs when
storing inputs in comparison with emitting events. While gas costs grow
linearly with both approaches, we observe a factor of 39, 340gas for each
added input in the classic storage approach, but only 19, 698gas for using
events, just about half of the former. The base costs for adding a batch
with no input goods account for 92, 634gas.

5.1.3. Library and proxy contracts

Attached costs for deploying and executing code entails novel re-
quirements for software engineering. As the contract code needs to be
stored for every contract instance created on the blockchain, the code
size should be decreased to minimize gas costs. To do so, we split the
token contract into a proxy contract with the minimal size and a library
contract that includes all necessary logic. When creating a new token
contract instance, only the proxy has to be redeployed, which decreases
costs as the complexity of execution logic is outsourced into the library
which is only deployed once for all instances. The state remains within
the proxy, ensuring the separation between the general contract logic and
the product-specific information. Fig. 5a) indicates the gap between
deployment costs in the lightweight approach using a library which is
constant at 415, 854gas for any input size. While using a library results in
significant gas savings when deploying a token contract, it also involves
increased costs for execution. As the proxy contract forwards methods to
library functions including its state, more execution steps are required,
which increases the gas costs. This is especially the case for goods with
large amounts of inputs, as pictured in Fig. 5b). We observe that the
utilization of a library is beneficial only if the token contract is not
intensively used after deployment. With base costs of 88,202gas for
adding a new token batch in the classic approach, 92, 634gas when using
a library and factors of 19,698, and 27,427gas for each input, respec-
tively, we set up the following equation:

415, 854gas
X =
4,432gas + 7,729gas * |S|

where x is the equilibrium between using a library contract and classic
deployment and S is the set of inputs. As a result, when having no input,
the library is only cheaper in terms of gas for up to 93 minting calls; while
for ten inputs, it's only cheaper for up to 5 calls. In addition, token owners
transfer split, merge and consume batches, which needs more gas using a
library due to the involved overhead in the proxy contract.

5.1.4. Impact of tiers
To picture more complex scenarios, we create product tokens with
two inputs on multiple tiers. Consequently, the resulting relationships
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can be represented as a binary tree with its height related to the level of
tiers tracked in a supply chain. We create batches with multiple tiers and
compare the gas costs with a single batch that includes all inputs directly
instead of using multiple tiers. The resulting gas costs confirm our
assumption that gas costs depend on the amount of vertices and edges in
the sourcing tree. As a result, the overall gas costs do not depend on the
amount of tiers considered in a supply chain but on the amount of
sources, allowing precise cost estimations to maintain a traceability
system.

5.2. Scalability

The application's scalability depends on a multitude of variables.
Most importantly, the decision of utilizing a public or permissioned
ledger depends on the desired scope, accessibility and privacy consid-
erations. In case a public ledger is preferred, the scalability is highly
dependent on the involved gas costs (cf. Section 5.1). The scalability of a
permissioned ledger varies with its implementation of block size limi-
tations, consensus algorithm and mining time, determining attributes
such as throughput and ledger size. Tests using the Ethereum client un-
veils a plethora of aspects that influence ledger growth. For instance, the
file system's block size affects the ledger size as files created by the client
may fill only fractions of it, leading to increased disk space consumption.

Varying batch sizes influence the system's scalability in terms of
throughput, ledger size and potential gas costs. Consequently, small
batch sizes, as required for tracing single goods, negatively affect the
system's performance.

The gas limit determines the amount of operations that can be per-
formed in a single block in Ethereum. For estimating the scalability of the
proposed concept of supply chain traceability, we assume a gas limit of
eight million gas, as applied in the public mainchain at the time of
writing. While deploying token contract instances is an essential element
of the introduced system, we expect such operations to occur infre-
quently due to the minor measure of newly introduced product types.
Therefore, the main factors restraining the system's scalability originate
from batch creation and token transfer operations. While gas costs
related to batch creation depend on the amount of input tokens, the gas
required for transferring a token is constant at 32,426gas. Thus, when
considering transfer operations only, a theoretical maximum of 246
transactions can be performed per block or 1,416,960 transactions per
day at an average block time of 15s.

As scalability is a general challenge in today's blockchain systems
[31], supply chain participants could implement industry-specific per-
missioned ledgers to mitigate related shortcomings. However, due to
intersections of industries and bidirectional dependencies, interopera-
bility between such specialized chains is required. Relay networks like
Polkadot [32] and Cosmos [33] facilitate accessibility and portability of
assets between independent blockchain instances. For instance,
following the example presented in Section 3.5, the forester and the
sawmill may deploy their respective token contracts on a blockchain that
is targeted at wood processing, while the glue plant utilizes a ledger
assigned to the chemistry industry. In such a case, the glue token has to
be transferred to the wood processing ledger in order to be applied in the
sawmill's token recipe. As a result, a plethora of incorporating block-
chains permit employing industry-specific configurations to facilitate a
scalable application landscape.

6. Discussion and outlook
6.1. Incentives

Employing supply chain traceability on a blockchain implies trans-
parency to an extent that raises questions regarding participants’ will-
ingness to disclose otherwise confidential information. The degree to
which information is published depends on the underlying blockchain.
Using a public ledger entails unveiling information to a large audience,
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while utilizing a permissioned ledger restricts the number of participants
but may still reveal information to competitors. Therefore, the proposed
solution is only applicable for use cases in which the desired transparency
requirements exceed the threat of losing competitive advantage by
disclosing internal information. This may be the case if customers have
great interest in resource provenance or an increased quality level in an
environment with limited trust.

The main incentive for participating in a traceability system is to
increase customer's trust in the delivered product. For example, when
buying food, customers are willing to buy in larger quantities and pay a
higher price if they are enabled to reconstruct a product's provenance
[35]. With increasingly complex supply chains, guaranteeing high qual-
ity has become a difficult endeavor, generating the need for high
transparency.

6.2. Outlook

The proposed solution should be understood as a foundation for
blockchain-based supply chain management systems to be built upon. In
its current stage, it does not yet cover functionalities that may be required
in a real world setting. We anticipate the following features to be of
interest:

e Payment for goods: In our solution, payments are not considered. It is
questionable whether it would be desirable for a business to open its
books on how much has been paid for the acquisition of inputs for a
manufacturing process. If purchases were public, however, in-
efficiencies of the market would be transparent and could be
exploited.

e Shrinkage: If the goods are damaged or lost, the system currently has

no suitable mechanism to capture such an event, but to let the

affected business simply consume the respective tokens in order to
remove them from the supply chain.

Ownership vs. possession: It may be desirable to let a logistics firm

possess goods that are owned by another party. This raises additional

questions if such a logistics firm suffers from shrinkage.

e Packaging: There are scenarios in which goods may need to be pack-
aged together and extracted at a later stage. With the current solution,
a packaging process can be implemented similarly to a manufacturing
process, but the extraction of the original goods is not possible, which
inhibits traceability.

7. Conclusion

We have proposed a blockchain-based supply chain management
system that enables tracing and tracking goods, including their trans-
formation in the production process using smart contracts. The system
provides comprehensive provenance information by projecting product
compositions onto the blockchain in the form of tokens. Hereby, short-
comings of current traceability systems regarding isolated data storage
and the problem of lacking transformation information are tackled.
Defining compositions for production and enforcing them by using smart
contract enable the documentation of consumed resources in the pro-
duction process. Through this mechanism, products are traceable from
production to retail and the process starts from resource exploitation. As
a result, transparency is generated along the supply chain, providing
comprehensible production information.
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